From Random Motion of Hamiltonian Systems to Boltzmann's H Theorem and Second Law of Thermodynamics: a Pathway by Path Probability

نویسندگان

  • Qiuping A. Wang
  • Aziz El Kaabouchiu
چکیده

A numerical experiment of ideal stochastic motion of a particle subject to conservative forces and Gaussian noise reveals that the path probability depends exponentially on action. This distribution implies a fundamental principle generalizing the least action principle of the Hamiltonian/Lagrangian mechanics and yields an extended formalism of mechanics for random dynamics. Within this theory, Liouville’s theorem of conservation of phase density distribution must be modified to allow time evolution of phase density and consequently the Boltzmann H theorem. We argue that the gap between the regular Newtonian dynamics and the random dynamics was not considered in the criticisms of the H theorem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 Complete statistical description : the density operator

Statistical mechanics relies on the complete though probabilistic description of a system in terms of all the microscopic variables. Its object is to derive therefrom static and dynamic properties involving some reduced set of variables. The elimination of the irrelevant variables is guided by the maximum entropy criterion, which produces the probability law carrying the least amount of informa...

متن کامل

Heat and fluctuations from order to chaos

The Heat theorem reveals the second law of equilibrium Thermodynamics (i.e.existence of Entropy) as a manifestation of a general property of Hamiltonian Mechanics and of the Ergodic Hypothesis, valid for 1 as well as 10 degrees of freedom systems, i.e. for simple as well as very complex systems, and reflecting the Hamiltonian nature of the microscopic motion. In Nonequilibrium Thermodynamics th...

متن کامل

Hamiltonian systems follow Boltz - mann ’ s principle not Tsallis statistics . – Phase Transitions , Second Law of Thermodynamics

Boltzmann's principle S(E, N, V) = k ln W (E, N, V) relates the entropy to the geometric area e S(E,N,V) of the manifold of constant energy in the N-body phase space. From the principle all thermo-dynamics and especially all phenomena of phase transitions and critical phenomena can be deduced. The topology of the curvature matrix C(E, N) (Hessian) of S(E, N) determines regions of pure phases, r...

متن کامل

The Fluctuation Theorem

The question of how reversible microscopic equations of motion can lead to irreversible macroscopic behaviour has been one of the central issues in statistical mechanics for more than a century. The basic issues were known to Gibbs. Boltzmann conducted a very public debate with Loschmidt and others without a satisfactory resolution. In recent decades there has been no real change in the situati...

متن کامل

A PRELUDE TO THE THEORY OF RANDOM WALKS IN RANDOM ENVIRONMENTS

A random walk on a lattice is one of the most fundamental models in probability theory. When the random walk is inhomogenous and its inhomogeniety comes from an ergodic stationary process, the walk is called a random walk in a random environment (RWRE). The basic questions such as the law of large numbers (LLN), the central limit theorem (CLT), and the large deviation principle (LDP) are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Entropy

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2014